Identification of a mutational signature of dietary acrylamide in renal cancer genomes

Kim M. Smits¹, François Virard^{2,3}, Bérénice Chavanel², Sergey Senkin⁴, Vincent Cahais², Claire Renard², Kim Lommen¹, Jaleesa van de Meer¹, Marie-Pierre Cros², Jeroen van de Pol⁵, Maria Zhivagui⁶, Behnoush Abedi-Ardekani⁴, Frederick A. Beland⁷, Michael Korenjak², Leo J. Schouten⁵, Jiri Zavadil^{2*}

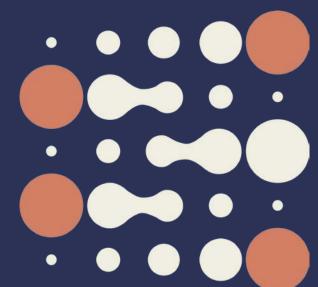
¹ Maastricht University, Department of Pathology, Maastricht, The Netherlands

² International Agency for Research on Cancer WHO, Epigenomics and Mechanisms Branch, Lyon, France

³ University Claude Bernard Lyon 1 INSERM U1052–CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France

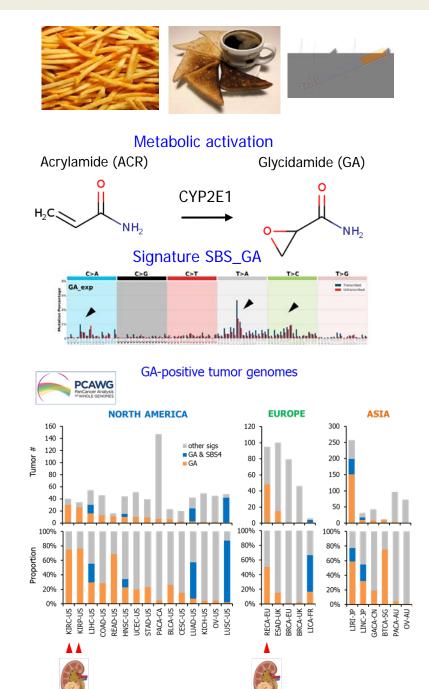
⁴ International Agency for Research on Cancer WHO, Genomic Epidemiology Branch, Lyon, France

⁵ Maastricht University, Department of Epidemiology, Maastricht, The Netherlands


⁶ University of California San Diego, Moore's Cancer Center, La Jolla- CA, United States

⁷ US Food and Drug Administration National Center for Toxicological Research, Division of Biochemical Toxicology, Jefferson, AR, United States

International Agency for Research on Cancer

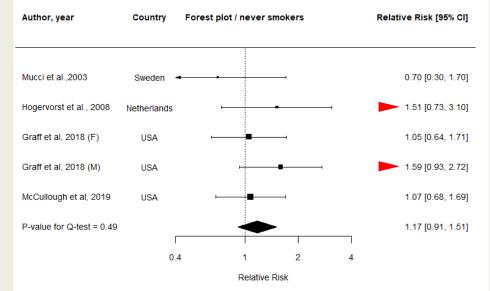


zavadilj@iarc.who.int (*presenter)

Introduction & Background

- Acrylamide (ACR) forms in heated starchy and other foods and in the tobacco smoke
- Probable human carcinogen (IARC Group 2A)
- ACR and its reactive metabolite glycidamide (GA) high priority compounds for IARC Monograph evaluation
- EGM previously discovered mutational signature SBS_GA (Zhivagui M et al, 2019, PMID 30846532)
- SBS_GA was found operative in 30% of ~1,600 ICGC PCAWG tumour genomes (19 human tumour types, 14 organs)
- Clear-cell renal cell carcinomas (ccRCCs) were markedly enriched for SBS_GA (70% of 111 samples)

Introduction & Background

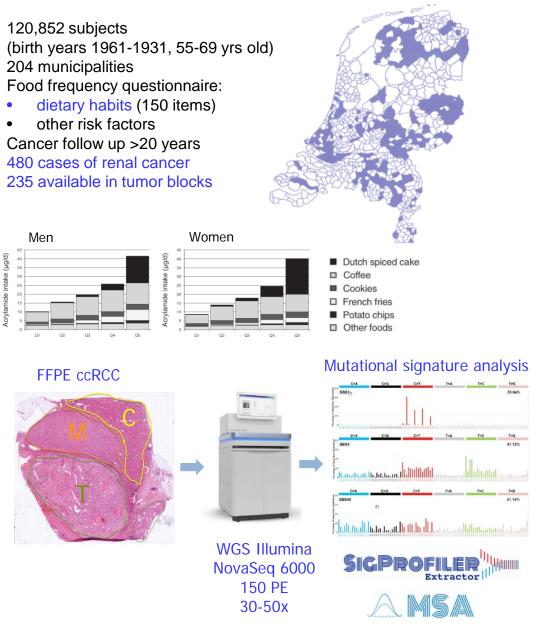

- The ccRCC findings were consistent with our reanalysis of epidemiological studies indicating elevated non-significant risk associated with dietary ACR in never smokers
- ACR/GA mutational signature has not yet been specifically linked to ACR exposure history

Hypothesis

 Exposure to dietary ACR/GA leads to dosedependent genome-wide mutagenesis underlying ccRCC development

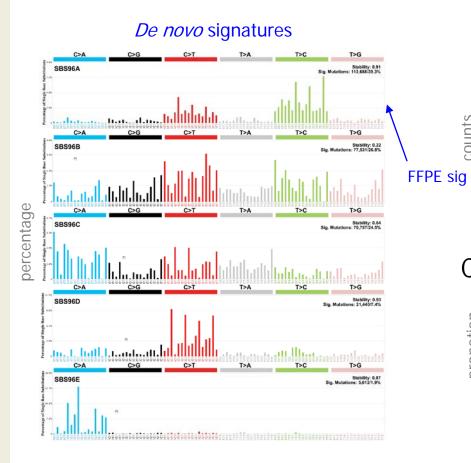
Overall Country Forest plot / all Relative Risk [95% CI] Author, year Mucci et al.,2003 0.80 [0.40, 1.70] Sweden Mucci et al., 2004 1.10 [0.70, 1.80] Sweden Pelucchi et al., 2007 1.20 [0.88, 1.63] Italy Hogervorst et al., 2008 1.59 [1.09, 2.30] Netherlands Hirvonen et al., 2010 1.28 [0.76, 2.15] Finland Graff et al, 2018 (F) USA 0.85 [0.61, 1.17] 1.09 [0.77, 1.55] Graff et al, 2018 (M) USA McCullough et al, 2019 1.09 [0.82, 1.43] USA P-value for Q-test = 0.38 1.12 [0.98, 1.27] 0.4 4 Relative Risk

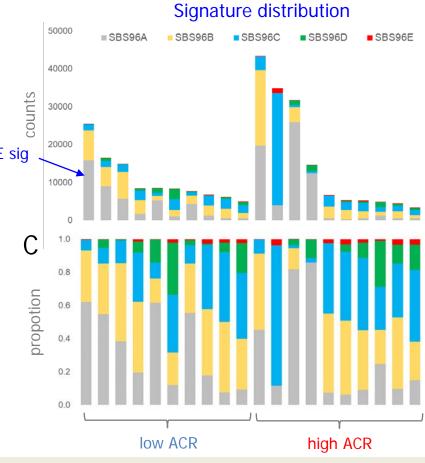
Never smokers only


Specific Aims

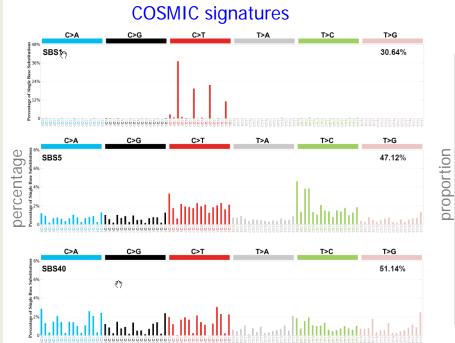
• Determine SBS_GA in ccRCC and its correlation with documented dietary ACR intake

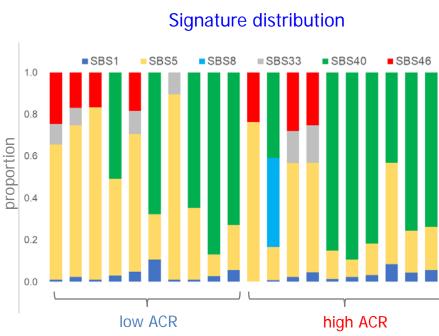
Strategy & Design


- ccRCCs of never-smokers from the Netherlands
 Cohort Study on Diet and Cancer (NLCS)
- Compare low vs. high dietary ACR intake groups
- Whole-genome sequencing of macro-dissected FFPE material
- Innovative mutational signature analysis (extraction coupled with per-sample attribution)

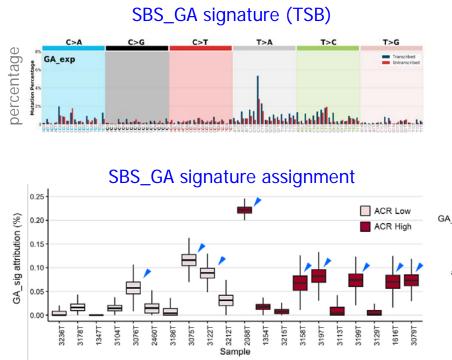

Netherlands Cohort Study on Diet and Cancer

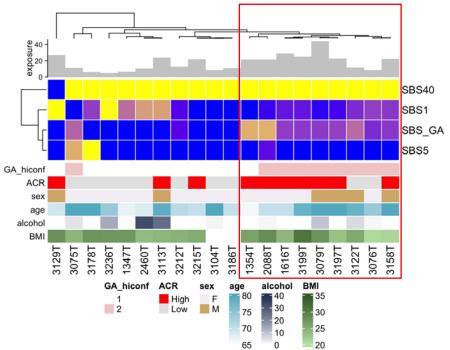
Results


- 5 *de novo* signatures
 identified, including at
 least one specific for
 FFPE-related artefacts
- No exposure-group signature enrichment was observed



Results


- 3 expected endogenous
 COSMIC signatures
 identified: SBS1, SBS5,
 SBS40
- No exposure-group signature enrichment was observed



Results

- Signature SBS_GA is found enriched in the high ACR exposure group (2-fold)
- SBS_GA levels can discriminate the exposure groups
- No correlation with sex, age, alcohol or BMI has been observed

Patient-signature clusters

Conclusions

- Our study reveals that the SBS_GA signature enrichment in renal tumors of patients with documented ACR intake history, suggesting contributing effects of dietary ACR
- The findings may have important implications for the planned IARC Monographs evaluation of ACR and GA, and for cancer prevention aimed at the reduction of human exposure to ACR
- The study should be extended to a larger sample set and to other cancers sites

References

- Hogervorst JG et al, Am J Clin Nutr, 2008
- Graff RE et al, CEBP, 2018
- Zhivagui M et al, Genome Res 2019
- Marques MM et al, IARC Monographs Priorities Group Lancet Oncol, 2019
- Barupal DK et al, Environ Int, 2021
- Senkin S, BMC Informatics, 2021
- Smits KM et al, 2024, Forthcoming

Acknowledgements

Funding: INCa-INSERM Plan Cancer 2015; WCRF International, Grant No. SG_2020_089

Key take-home message

 Dietary acrylamide generates a specific mutational signature in human kidneys, via the mutagenic effects of glycidamide, its reactive metabolite. This signature contributes to the mutational landscapes of renal tumors and it reflects the past acrylamide intake levels.