Molecular characterisation of lung neuroendocrine tumours through innovative technologies

A. Sexton-Oates, E. Mathian, C. Voegele, N. Alcala, M. Foll, L. Fernandez-Cuesta

Rare Cancers Genomics Team, Genomic Epidemiology Branch

<u>SextonoatesA@iarc.who.int</u>

International Agency for Research on Cancer

Introduction

	Atypical pulmonary carcinoid	Typical pulmonary c arcinoid
WHO grade	G2	G1
Epidemiology	Female 50s	Female 50s
Necrosis	Focal, if any	No
Mitosis per 2mm²	2-10	<2
10-year OS	51% (38-74)	89% (60-100)

Lung neuroendocrine Tumours (LNETs) DATA NOTE

A molecular map of lung neuroendocrine neoplasms

Aurélie AG Gabriel ¹, Emilie Mathian^{1,†}, Lise Mangiante ¹, Catherine Voegele¹, Vincent Cahais ², Akram Ghantous ², James D. McKay ¹, Nicolas Alcala ¹, Lynnette Fernandez-Cuesta ¹, and Matthieu Foll ¹, [‡]

Design

lungNENomics

Unveiling the molecular pathways underlying the development of lung neuroendocrine neoplasms

WGS sequencing RNA sequencing DNA methylation array Central pathology review

Results: Identification of molecular groups with distinct epidemiological and genomic features

Sexton-Oates A, Mathian E, et al. In preparation.

Samples

MEN1

ARID1A

EIF1AX

ATM

HLA-C

ASXL1
BRAF
CLIP1
SGK1

IntOGen LNET drivers

Results: Deep-learning image analysis better identifies distinct morphological communities between molecular groups than between tumour types

Results: Immune micro-environment is variable between molecular groups, and particularly heterogeneous in supra-carcinoids

Sexton-Oates A, Mathian E, et al. In preparation.

Discussion and Conclusions

Existence of four molecular groups of lung neuroendocrine tumours with variable:

- Epidemiology
- Genetics
- Morphology
- Immune micro-environment

New model systems can teach us more about their development

Cancer Cell

Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites

Graphical abstract

Authors

Talya L. Dayton, Nicolas Alcala, Laura Moonen, ..., Matthieu Foll, Lynnette Fernández-Cuesta, Hans Clevers

Potential to impact public health through improving classification systems, intercepting tumours at an early stage, and putting patients on the right path for personalised cancer management

Article

Key take-home messages

Integration of multi-omic and spatial data analysed with cancer evolution approaches, coupled with whole-image deep learning analyses, provides a comprehensive molecular and morphological understanding of lung neuroendocrine tumours.